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Abstract 

Barrel heating and erosion concerns for the Navy are being brought to light by new 
extended-range munitions. These munitions have, in general, higher performance 
requirements and use new propellants. In light of these concerns, the following 
investigation was performed to determine the thermal and erosion characteristics of the 
current and proposed munitions. In this report, the calculation methodology governing 
both the thermal and erosion work is described. Six thermal scenarios were computed to 
compare the thermal load from various combinations of charges. Single-shot erosion 
predictions are presented for three charges: MK67 with NACO propellant, MK73 with 
M30Al propellant, and EX167 extended-range guided munitions (ERGM) propelling 
charge with EX99 propellant. A fourth single-shot erosion calculation was made using 
the product gas-state variables and gas velocity of the MK73 charge with chemical 
constituents of EX99 propellant. The erosion results highlight propellant combustion 
product differences at the surface between the current and newer propellants. The 
primary conclusion is that carburization leading to iron carbide formation may be an 
important contributing factor for much of the material lost from the steel barrel once it is 
exposed through cracks or chips in the surface coating. 
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1. Introduction 

The Navy’s requirement for extended-range ordnance using shipboard cannons has led to the 

development of a new 5-in, 62-Cal. MK-45, mod-4 gun system capable of firing both 

conventional ammunition and extended-range guided munitions (ERGM). The methods 

involved enabling increased range performance are higher muzzle velocity, the inclusion of a 

rocket in the projectile with tail fins and forward canards, and improved airframe aerodynamics. 

The requirement to be able to shoot the current ammunition inventory fixed the, gun chamber 

geometry. Several other constraints limited what could be done with the gun mount, barrel, and 

propelling charge. The length and weight of the barrel were governed by many factors: gun 

mount slew rate requirements, barrel droop and whip considerations, the physical envelope 

available onboard ship, blast overpressure effects on ship structures, maximum trunnion loads, 

recoil load-handling capability, and barrel yield strength, among others. For the propelling 

charge, since the chamber volume was already fixed, other means were used to achieve higher 

muzzle velocity: increasing projectile travel due to a longer gun barrel, operating the propelling 

charge at a higher chamber pressure, and increasing the system chemical energy by utilizing a 

propellant of greater density and impetus. Unfortunately, the latter usually resulted in an 

increase in the adiabatic flame temperature of the propellant. 

The modifications related to the propelling charge are expected to create an increased 

thermal load upon the gun and may result in an increase in the erosion rate. Previously, Navy 

guns were fatigue limited due to the extremely low adiabatic flame temperature of the Navy cool 

(NACO) single-based propellant. With the newer, higher energy propellant, it is expected that 

the gun barrel’s life will be erosion limited. This report investigates the effects of candidate new 

charges on the system’s thermal load for specific firing scenarios, as well as the erosion 

differences between the older and newer propelling charges. Navy 5-in gun barrels are normally 

plated with a 5-mil-thick layer of chrome. While this layer can afford dramatic protection from 

erosion, it tends to crack, flake, and peel during the first few hundred firings. In the erosion 

portion of this investigation, the chrome layer was assumed absent. 



Historically, the propellant adiabatic flame temperature was used as an indicator of the 

erosivity of a propellant. Unfortunately, flame temperature was not the only factor [ 1, 21. 

Mitigation of the erosion was a mystery, with the exception of the obvious solution of applying 

surface coatings or ablatives. Attempts to model erosion using first principles have been and are 

currently being made [3-61, although it is believed that significant additional work is required to 

understand the fundamental physics involved. 

2. Mechanistic Descriptions 

2.1 Heat Transfer. The U.S. Army Research Laboratory (ARL) XBR two-dimensional 

(2-D) heat-transfer/conduction code used in this report is an extension of the Veritay XBR-2D 

heat-transfer/conduction code [7, 81 and consists of a 2-D axisymetric implicit fmite-difference 

heat-conduction model. Required inputs include barrel geometry and physical properties, as well 

as a single-round interior ballistic history of the propellant product gas velocity, pressure, and 

temperature. 

The inner boundary condition consists of forced convective heat transfer over flat plates [S] 

where k is the conductivity, Tgns is the combustion product gas temperature, and Twnll is the wall 

temperature. The coefficient h is provided from a correlation of correlations [9] and given as 

h = 0.037~Re’0.8 cfCp , 
X Cfi 

(2) 

where u* is the viscosity computed from a form of Sutherland’s law, x represents the equivalent 

flat-plate length to the axial position of interest, Re is the Reynolds number, Re = xpu/y*, and CP 

is the specific heat of the wall material. The compressible skin friction ratio Cf/C$, where y is 
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the specific heat ratio and M is the Mach number, is given by 

Cf/C$ = [1 -t- (y - 1)2kq6. (3) 

The outer boundary condition consists of both convective and radiative heat transfer and is 

expressed as 

where E is the emissivity of the wall, (J is the Boltzmann constant, and T, is the temperature of 

the surroundings. The convection coefficient, h,,,,, is represented by one of two models, 

depending on the value of the Reynolds number. For buoyant laminar flow, the convection 

coefficient is expressed as 

for air, where UD is the outer diameter of the barrel wall. The units are accounted for in the 

coefficient. For buoyant turbulent cross flow in air, the convection coefficient is 

h conv = 1.2 VW, - T, Y3 J (6) 

where, again, the units are accounted for in the coefficient. 

This heat-transfer model has been validated with differing gun systems and differing 

ammunition, such as 120-mm M256 with MS29 [lo, 1 l] and M865 [ 10, 111; 155 mm with 

M203 [S], MACS, [12] and LP zones l-7 [13]; 25-mm Bushmaster with M919 and M791 [14]; 

and 27-mm caseless [Xl. The results agree with the experimentally measured values. 



2.2 Erosion Methodology. The erosion representation consists of three fully coupled 

portions, including thermal ablation and heat conduction with an iterative solution for the surface 

regression, independent heat and multicomponent species mass transport to the surface, and full 

equilibrium thermochemistry. The contributions due to mechanical wear and abrasion, however, 

are not included. A surface control volume treatment is also included to ensure conservation of 

mass of the solid-phase product species due to the solid-gas interface. The core flow gas-phase 

velocity, as well as state variables pressure and temperature of the gun tube from the XKTC [ 151 

or NGEN [ 163 interior ballistic codes are used, as well as species data from IBBLAKE [17--l 93. 

The thermochemistry calculation incorporates the NASA Lewis [20] thermochemical database. 

Primary features of the model have been described [6,13] and are cursorily presented here. 

The model, shown conceptually in Figure 1, enables the surface to heat convectively. A 

surface control volume is defined, and surface reactions occur, which release additional energy 

into the system as a surface source term. Various gas, solid, or liquid products are produced, 

which either remain as solids or are removed in the case of gases and liquids. 

Gas Phase Solid Phase 

Interior Ballistic 
Supplied P,T,u 4 

Convective Heat Transfer 

Interior Ballistic 
Supplied Species 

Concevtions 

Mass Removal- 
Liquid Species 

pelt Wipe) 

LennardJones 

Species Mass 
Transfer 

Mixture Diffusion 
and Mixture Viscosity 

Gas 

Material Surface 

Figure 1. Conceptual Tube Surface Illustration. 
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The in-depth temperature response of the unablated (solid) material is modeled using the 

one-dimensional (1 -D) heat conduction equation: 

, (7) 

By setting p = 0 or p = 1, the planar or axisymmetric form of the governing equation can be 

obtained. The relevant material properties are density,p; specific heat, Cp; and conductivity, k. 

The conductivity and specific heat vary with temperature. 

The surface energy balance, while gross melting is not occurring, includes the same 

convective surface heat input used in the thermal calculations, along with the possible 

contribution due to the surface reaction (shown in equation 8). This source term is balanced with 

the energy conducted through the material: 

h (r,s - TWO/!) = - kg + Source. 

However, when the system is melting, the energy balance includes the fixed surface temperature 

condition, as well as the unknown surface location. The surface temperature cannot rise beyond 

the specified melting value because any additional energy is applied to the material-phase 

transition (melting) as shown: 

Prior to the onset of melting, the governing equations and boundary conditions are linear, and 

solutions are obtained in a direct (noniterative) fashion. During the melting process, the 

equations become nonlinear since the computational domain dimensions are coupled to the 

regression rate. An iterative approach is utilized during melting to address the nonlinearity. 

Because the boundary of the computational domain moves during the erosion event, a 
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transformed version of the governing equation is employed. This allows the equations to be 

solved in a fixed computational space, even though the physical boundary is moving. A 

generalized transformation between the computational coordinate, 5, and the physical coordinate, 

I-, is utilized, as shown in the transformed equations: 

and 

In this form, the nonlinear nature of the governing equation produced by the moving boundary is 

evident because the metric terms, & and &, are not constant and are dependent on the erosion 

rate when the grid is moving. This methodology compares very well to the semi-analytical 

solutions of Landau in test cases [20]. 

The species mass transport to the surface from the core flow of the propellant product gases 

is assumed frozen and is provided through a concentration potential q~ i C0re _ flow - vi Wall for each 

species i, and a mass transport coefficient h, derived from Sherwood number correlations 

integrated over space and time [6]: 

The surface control volume reaction is governed by equilibrium kinetics because the actual 

reactions and rates are not well known at this time. Equilibrium chemical processes are 

considered to dominate whenever the characteristic time for a fluid element to traverse the flow 

field of interest is much longer than the characteristic time for chemical reactions to approach 

6 



equilibrium. As the pressure and temperature increase, the molecular collision frequency and 

energy per collision increases, leading to smaller characteristic chemical times, and the chemical 

processes approach equilibrium. 

. 

The condition for chemical equilibrium may be stated as the minimization of the Gibbs free 

energy [21]. For a mixture of N species (e.g., atoms or molecules) with the number of moles of 

species denoted as IZ~, the Gibbs free energy per mole of mixture is given in terms of the Gibbs 

free energy of the individual species, gi; the internal energy, e; the temperature, T; the entropy, s; 

the pressure, p; and the specific volume, v: 

G=snigi =e-Ts+pv. 
i=l 

2.3 Surface Description. The full equilibrium control volume approach, as shown in 

Figure 2, results in many product mass fractions that are physically impossible due to the 

constraints of diffusion into the solid phase. Mainly, the carbon that results from CO and/or CO1 

breakdown will react with as much iron as possible to form Fe$ if permitted. To treat this 

deficiency, the amount of carbon available for a reaction with the steel is diffusion limited. 

Gas diffusionEOS Carbon diffusion depth 
4 

(function of temperature) 

Gas Phase 

4 

Gas and liquid 
products removed 

4 

Residual: Steel, 
Fresh steel (if needed) 

Fe&, C(GR), Fe304 

Figure 2. Control Volume Description Showing Solid-Phase Dependence Upon Carbon 
Diffusion Depth. 



A surface exposed to a carbon concentration G per unit surface area for a specified length of 

time t has a carbon concentration C(X) at a specified depth of x given by the following 

relationship: 

where D is the diffusion coefficient over the a and y phases (body-centered cubic [BCC] and 

face-centered cubic [FCC] lattice structure, respectively). The diffusion of carbon into a iron 

(T < 1,118 “C) is given by the following function in Smithells Metals Reference Handbook [22] 

in square centimeters per second, were R, is the universal gas constant in (kilo-calories per mole 

per Kelvin): 

-19.8 -29.3 

D = 0.008P 

- 

+ 2.2e RJ , (14) 

while the diffusion of carbon into y iron ( T < 1,300 “C) is provided by 

-36 

D = 0.36eC, (15) 

To find the total amount of carbon that has diffused in time t, the concentration function can be 

integrated and has an error function solution as 

fC(x)a!x = & jeg dx = G&f(x)). 
0 0 0 

(16) 

Integrating the concentration profile to the maximum depth to which material can diffuse in time 

t provides the carbon diffused into the material over the time period. To treat the reactant 

products from the full equilibrium calculation, a subset reaction is created consisting of the 



carbon, iron (a) and iron (y), and iron carbide. The total carbon available for reaction is equal to 

the diffused carbon plus the residual carbon in solid from the original steel or carbon in the form 

of iron carbide, as well as the possible carbon on the surface: 

C(GR) + Fe(a) + Fe(y) +, Fe,C, (17) 

where Fe(a) or Fe(y) are supplied as fresh material as needed, depending upon the control 

volume temperature. The product carbon, in the solid portion of the control volume, C(GR), and 

Fe& from the previous time step are retained as residuals and reintroduced as reactants in the 

next time step unless the surface temperature is over the melting point of Fe$, in which case the 

carbide is removed. If there is no excess carbon, then Fe(a) or Fe(y), depending on the 

temperature, is carried over to the next time step. Once the post-equilibrium calculation is made, 

the fmal energy change in the control volume is recomputed and the amount attributable to the 

residual solids is accounted for as the surface energy source term. Oxide formations are treated 

similarly. 

2.4 Erosion Calculations. Four Navy propelling charges were modeled, as presented in 

Table 1. The first three (EX167, MR73, and MK67) have been fired in the cannon specified. 

The fourth round (EX9973) is a numerical experiment of a hypothetical propelling charge using 

EX99 propellant with a MK92 projectile in the 5-k/62-Cal. gun, with matching ballistics 

characteristics to the MK73 charge in the same gun. This charge provides an interesting 

comparison to the standard MK73 charge since the ballistic performance, total system chemical 

energy, and propellant flame temperatures are very similar, while the concentrations of certain 

propellant combustion species differ substantially. Namely, for the M30A1, the principle 

combustion product is N2, while for the EX99, it is CO. Normally, the MK73 charge includes a 

TiOJwax wear-reducing liner that tends to reduce the heat transfer to the barrel somewhat; 

however, the liner was not included in this investigation. 

Please note that the caliber of the cannon includes between 35 and 40 in of chamber, so the 

travel is not the length of the tube. Each of these rounds was modeled using XKTC and 
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Table 1. Modeled Propelling Charges 

Propelling Propellant/ Adiabatic Projectile/ Peak LB Muzzle 
Charge Weight Flame Temp. Weight Pressure Velocity Cannon 

(lb) K) (lb) (psi) ,, ow (in/Cal.) 

EX167 EX99126.50 -3,010 ERGM/l 10 67 2,812 5J62 

MK73 M3OAU21.26 -3,040 MKl09/68.2 55 3,098 5162 

MK67 NAC0/20.78 -2,285 MK92170.0 52 2,791 5162 

EX9973 EX99/20.00 -3,010 MK109/68.2 54 3,105 5162 
Num. Exp. 

IBBLAKE to obtain gas state and velocity data, as well as the thermochemical constituents for 

each charge. 

The single-shot inner surface peak temperatures are presented in Figure 3 for the four rounds 

modeled in Table 1. As expected, the EX167 charge with the EX99 propellant had the highest 

inner surface temperature of about 1,625 K at 43 in from the rear face of the tube (RFT), while 

the MK67 propelling charge with the NACO propellant had the lowest inner surface temperature 

of about 1,210 K at 40.9 in from RFT. The surface temperatures for both the MK73 and altered 

propellant MK73 were between the MK67 and EX99 temperatures, with a peak of about 1,575 K 

at 40.9 in from RFT. Note that these wall surface temperatures are only short-lived transients 

that decay to much lower “residual” temperatures within seconds of the firing as the energy 

diffuses into the gun tube. 

The erosion predictions in Figure 4 highlight not only the surface temperature effects on 

erosion but also the propellant combustion product differences at the bore surface for each of the 

three propellants. The results are fairly consistent with the rule of thumb concerning barrel 

surface and adiabatic flame temperatures, where the EX167, MK73, and MK67 propelling 

charges exhibit a decreasing trend in material lost. Perhaps the most interesting result occurred 

when the chemistry from a matching pressure and velocity EX99 charge of the MK73 charge 

was placed into the MK73 erosion calculation. Figure 4 demonstrates an increase in erosion of 

about 15%, not accounted for through surface temperature changes, but rather through species 

10 
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Figure 3. Single-Shot Surface Temperatures for MK67, MK73, EX167, and MK73 With 
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concentration differences in the combustion products of EX99 propellant and M30Al propellant. 

Given that none of these charges cause the surface to exhibit gross melting of the original gun 

steel material (i.e., the bore temperature never reaches the melt temperature), the mechanism 

described for the material loss (i.e., removal of the carbide formed) is controlling the erosion 

rate. 

2.5 Thermal Calculations. For the thermal scenario investigations, six firing scenarios are 

specified in Table 2 with a mix of rounds. Each scenario was computed assuming that the charge 

case was nonexistent, and the rounds are ordered as shown in the table. The EX167 propelling 

charge must be double-rammed with the long rocket-assisted projectile rammed in the first cycle, 

and the propelling charge must be rammed separately in the second cycle. Maximum firing rate 

for these rounds that are in the ready service drum is about 9 rounds/min. After this supply is 

depleted, rounds must be taken from the magazine and hand loaded into the ready-service drum. 

This reduces the effective firing rate for following rounds to about 4 rounds/min. 

Table 2. Six Firing Scenarios for Thermal Considerations 

Scenario No. Type of Prop. Charge No. of Rounds Firing Rate Round Location 
(rounds/min) 

EX167 
EX167 
MK67 
MK67 
MK67 
EX167 

10 
240 
250 
20 

230 
250 

In ready-service drum 
From storage 
From storage 
In ready-service drum 
From storage 
From storage 
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The MK67 and MR73 propellant charges are single-rammed, so the maximum firing rate for 

rounds that are in the ready service drum is 18 rounds/min. After this supply is depleted, rounds 

must be taken from the magazine and hand loaded into the ready service drum. This reduces the 

effective firing rate for following rounds to about 10 rotmds/min. 

Scenario nos. l-3 involve mixed ammunition and mixed firing rates presented in 

Figures 5-7. Figure 5 demonstrates the effect of firing rate on temperature increase. As the 

firing rate changes from 9 rounds/min to 4 rounds/min, the temperature quickly responds by 

dropping a little, producing a small spike or sawtooth. When the firing rate is once again 

increased to 10 rounds/min, the temperature profile responds again by jumping up about 20 K, 

until settling into a new heating profile. The peak temperatures experienced at the end of this 

scenario are about 1,025 IL The temperature history for scenario no. 2 shown in Figure 6 is 

somewhat the inverse of scenario no. 1 in that the firing rate is more rapid at the beginning and 

then slows down. This gives the energy more time to soak through the cannon and assist in 

removing the energy in external convection by having the external temperature difference higher 

for a longer period of time; thus, the final temperatures are slightly lower than scenario no. 1 at 

about 1,000 K. Scenario no. 3 involves an even mixing of the firing rates and charges. It also 

produces what appears to be the worst of the first three scenarios, with a final temperature of 

between 1,150 K and 1,250 K. The sawtooth effect presented is also seen in scenario no. 1 

during the change from 4 rounds/min to 10 rounds/min, with a similar jump in temperature. This 

effect is coupled to the uniformity of the temperature throughout the barrel. The radial 

temperature profile does not settle into a steady increase in temperature (i.e., a top-hat profile) 

for scenario no. 3, but rather is continuously driven to higher differentials between the outer and 

inner temperatures, thus resulting in higher inner surface temperatures. 

The results of the calculations for scenario nos. 4-6 are presented in Figures S-10. The inner 

surface temperature for the nominal MK67 NACO charge rises over the 600 rounds, at 

10 rounds/min, to about 1,000 K in Figure 8. Figure 9 shows that the temperature of the cannon 

rises to about 1,050 K at the case mouth for the EX167 charges. Figure 3 shows that the single- 

shot peak temperature is highest for the EX167 charge (EX99 propellant), An explanation for 

13 



wo 

400 

300 

, / I 
I I I M I I I I I 

I I I 
1 

I I 
I 

/ I I 
I / I I 

0 looo 2ooo 3ow 4ooo 5ooo 8wo 

Time (5) 

Figure 5. Inner-Bore Residual Surface Temperatures for Scenario No. 1: 10 EX167 
Rounds at 9 Rouuds/min, Followed by 240 EX167 Rounds at 4 Rounds/min, 
Followed by 250 Rounds of MK67 at 10 Rounds/mine 

1300 

400 

I I I I I 

I  

I  r  /  

I  I  I  

I / I 

I I I I I I I / f I I 
I I I 

I 
I I I I I 

I 
300 

0 1000 2000 3ooo 4wo 8ooo 6000 

Time(S) 

Figure 6. Inner-Bore Residual Surface Temperatures for Scenario No. 2: 20 MK67 
Rounds at 18 Rounds/min, Followed by 230 MK67 Rounds at 10 Rounds/min, 
Followed by 250 Rounds of EXI67 at 4 Rounds/min. 

14 



Figure 8. 

iii: 

0 moo 2ooo 3000 4ooo 5ooo 8ooo 

l-me(s) 

Inner-Bore Residual Surface Temperatures for Scenario No. 3: 10 MK67 
Rounds at 10 Rounds/min, Followed by 10 EX167 Rounds at 4 Roundsjmin, 
Alternating Until 500 Total Rounds Are Fired. 

1300 

I ! I ! ! I I 
12W 

300 

0 300 600 900120015001800210024002700300033003600 

Tim (s) 

Inner-Bore Residual Surface Temperatures for Scenario 
Charges at a Firing Rate of 10 Roundsimin. 

No. 4: 600 MK67 

1s 



1200 

1100 

1000 

E 
f 900 

iii 
6 

E 
800 

f 700 
u" 
i! 
; 600 

500 

400 

/ 
I’I I I I I 

1000 2000 3000 4000 5000 

Time(s) 

7000 8000 9000 

Figure 9. Inner-Bore Residual Surface Temperatures for Scenario No. 5: 600 EX167 
Charges at a Firing Rate of 4 Rounds/min. 

300 

0 300 600 900 12001m18002l0024Ml27003ooo33003600 

Time (s) 

Figure 10. Inner-Bore Residual Surface Temperatures for Scenario No. 6: 600 MK73 
Charges at a Firing Rate of 10 Rounds/min. 

16 



why the higher flame temperature EX99 propellant and the low-temperature WACO propellant 

produce very nearly the same peak residual bore temperatures in the firing scenarios is that the 

reduced firing rate of the EX167 round due to double ramming reduces the overall thermal 

burden on the cannon Figure 10 presents the MK73 M30Al propellant scenario of 600 rounds 

at 10 rounds/min. Of these three scenarios, this one has the highest temperature in the region of 

the case mouth, about 1,250 K. 

Any potential discrepancy between these computed scenarios and existing experimental data 

is most likely due to potential inaccuracies in the external heat-transfer coefficient. The 

coefficients chosen may not be applicable when the external temperatures becomes as high, as in 

these scenarios under these extreme firing and thermal-loading conditions. Also, it must be 

noted that, even at these high temperatures, there will still be a temperature gradient from the 

inner wall temperature plotted herein to the outer wall temperatures measured elsewhere over a 

long firing scenario. 

3, Conclusions 

The primary conclusion concerning the erosion potential for the charges is that, although the 

flame temperature is about the same for the EX99 propellant and M30Al propellants, their 

erosivity appears to be much different because of the product species. In M30A1, the primary 

product species is Nz, while EX99 has carbon monoxide as the principal product species. 

Carbon monoxide degenerates on the surface and is the principle source of carbon for iron 

carbide formation. These results stress the importance of developing an effective wear-reducing 

agent for the EX167 propelling charge. The Navy is currently evaluating such agents in the form 

of conventional TiOz/wax wear-reducing liners and ablative paste. 

The predominate erosion mechanism proposed states that carburization leading to iron 

carbide formation may be an important contributing factor for much of the material lost from the 

steel barrel once it is exposed through cracks or chips in the surface coating. Iron carbide melts 

at about 1,423 K as opposed to gun steels, which typically melt above 1,700 K. 

17 



The EX167 round may not load the cannon thermally more than it already is with the MK67 

NACO charge. The MK73 charge loads the cannon much more severely then either of the other 

tW0. 

The results obtained in this investigation have not been validated experimentally. It is 

unlikely that they can be, as it becomes cost-prohibitive to manufacture components and conduct 

a test of the magnitude required to study these effects. 

Future work may focus on adding species chemistries to simulate the effect of an ablative 

layer that has been deposited on the inner bore surface of the gun barrel. 
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